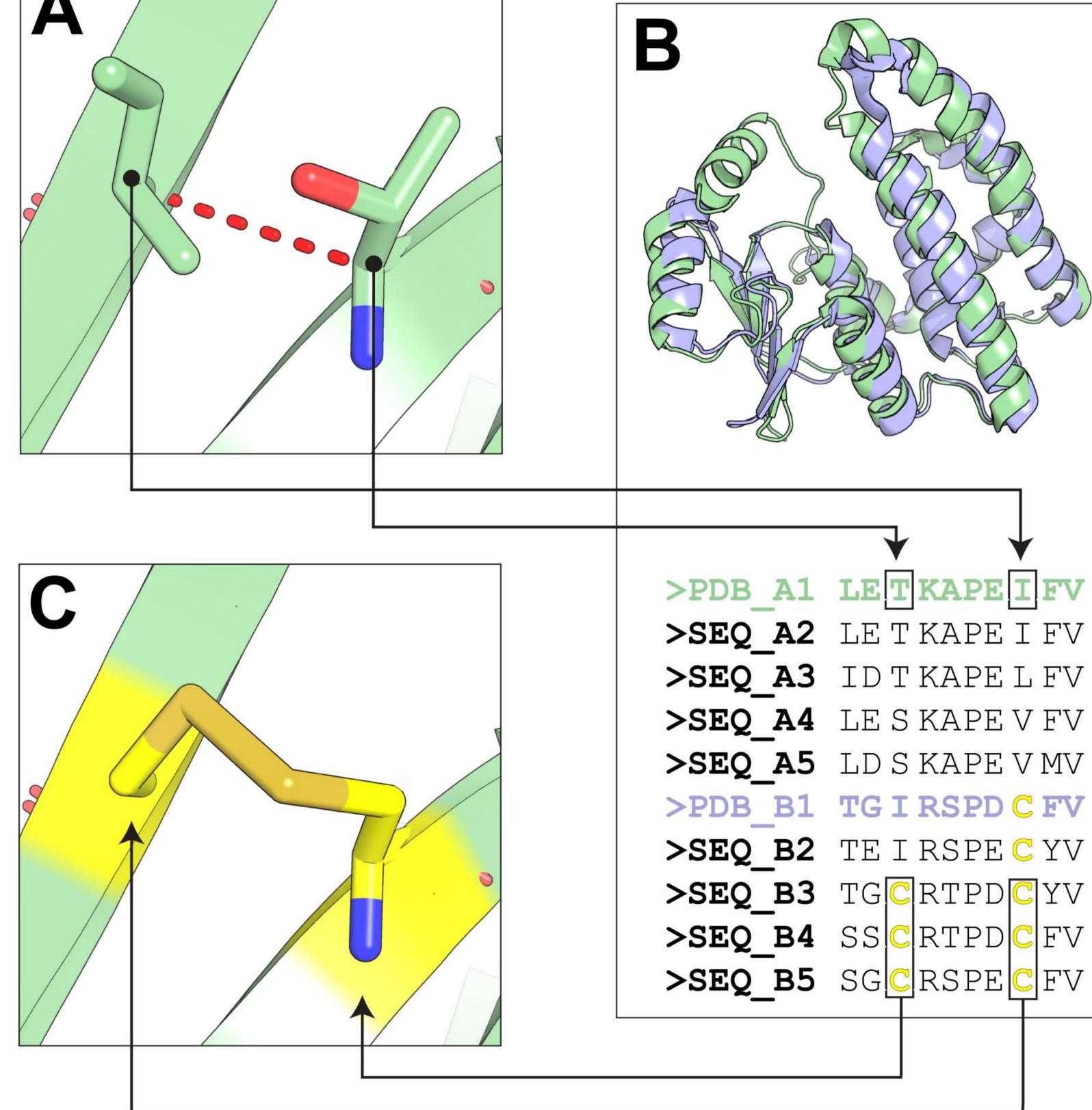
Yosshi: the bioinformatic approach to protein disulfide engineering

Dmitry Suplatov^{1*}, Daria Timonina², Yana Sharapova², Vytas Švedas^{1,2}

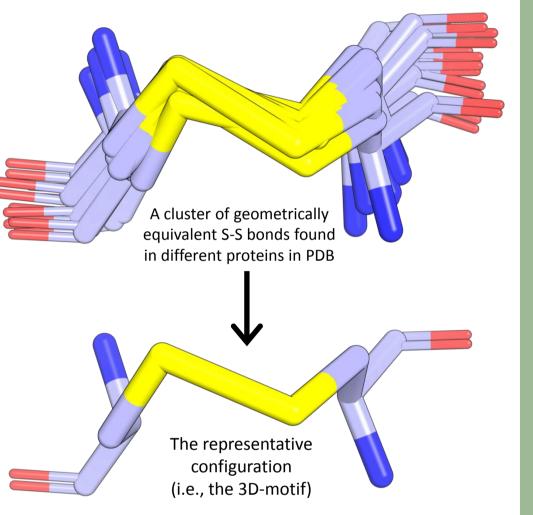
¹ Belozersky Institute of Physicochemical Biology and ² Faculty of Bioengineering and Bioinformatics at Lomonosov Moscow State University, Moscow, Russia d.a.suplatov@belozersky.msu.ru


Disulfide bonds are covalent crosslinks between the thiol groups of two cysteine residues that play a significant role in protein stability, function or regulation but are poorly conserved among evolutionarily related proteins. This provides an opportunity to study the roles that disulfide bonds play within a common structural fold of a superfamily by comparative analysis of homologs, as well as to introduce S-S bridges which naturally occur in some proteins into the structures of their homologs to improve stability or modulate function. We have developed the Yosshi – "Your web-server for S-S bond harvesting" in protein superfamilies – a new highly automated on-line tool for a systematic homology-driven analysis and engineering of disulfide bonds available at https://biokinet.belozersky.msu.ru/yosshi. The Yosshi facilitates a broader interpretation of disulfides not just as a factor of structural stability, but rather as a more universal, still insufficiently explored evolutionary instrument to

to disulfide engineering

I. Algorithm outline

The key novelty of the Yosshi is the use of bioinformatic analysis to search for pairs of cysteine residues in sequences of homologs followed by the 3D-motif analysis to evaluate whether introduction of the selected cysteines at corresponding positions in the user-submitted query protein can result in a formation of a disulfide bond



II. 3D-motif analysis

Assessing protein structure flexibility at disulfide engineering

1. Library of 3D-motifs of S-S bonds

- Clustering of S-S bonds with equivalent geometry from different protein structures;
- Selection of a representative configuration in each cluster, i.e., a 3D-motif;
- 273 3D-motifs of S-S bonds were identified in the PDB database (≤2.5Å)

2. "Flexible" statistical model

Comparison of the S-S bond >prot 1 ... IV CLK ... PT CER ... in a 3D-motif (blue) with its >prot2 ... LV A VK ... PS A QR ...

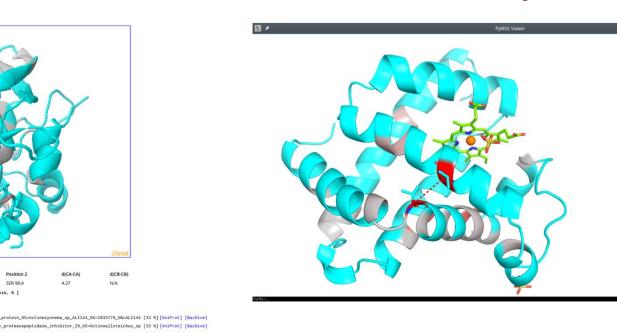
III. Output

Yosshi provides a detailed homology-based annotation of disulfides within a common structural fold of the superfamily

the backbone atoms between the S-S bond and its non-bonded equivalents in homologs is calculated to establish the limits of flexibility of a pair of amino acid residues capable of a disulfide bond formation upon mutation to cysteines

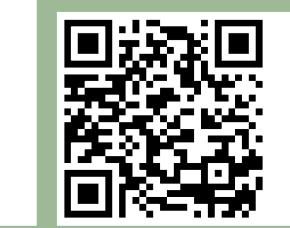
non-bonded equivalents in >prot 3 ... LV VLR ... PS TQK ... structures of homologous >prot 4 ... ITGLR ... PTSNR ... proteins (green): RMSD of >prot 5 ... IT A LR ... PT S DR ...

3. 3D-motif analysis of the query protein


A pair of positions in the query protein is confirmed as a promising site for S-S bond formation if the backbone RMSD with at least one 3D-motif is within X=0.70Å, what corresponds to a p-value of P(x > X)=0.05 of a normal distribution with μ =0.39Å and σ=0.19Å.

4. Construction of molecular models of mutants

Scan for details


The first output is a **list of pairs of positions** in the structure of the query protein that can form a disulfide bond assuming both residues are mutated to cysteines, or are already occupied by cysteines that can form a crosslink;

The second output is a **list of homologs** of the query protein, which contain cysteines in equivalent positions for each pair of such residues.

The results are delivered as a content-rich **PyMol session file** or can be studied **online** using the HTML5-based interactive analysis tools

The respective **pair of positions in** the query protein structure is replaced by the most similar 3D**motif** (i.e. selected by the lowest RMSD of the backbone) and this initial three-dimensional model of the mutant is further geometryoptimized

IV. Publications

D.Suplatov, D.Timonina, Y.Sharapova, V.Švedas (2019). Yosshi: a web-server for disulfide engineering by bioinformatic analysis of diverse protein families, Nucleic Acids Res., 47(W1), 308-14. . D.Suplatov, K.Kopylov, N.Popova, V.Voevodin, V.Švedas (2018). Mustguseal: a server for multiple structure-guided sequence alignment of protein families Bioinformatics, 34(9):1583-85.

This work was supported by the RFBR grant #18-29-13060. HPC computing resources at the MSU were supported by the project RFMEFI62117X0011.